iFEED: Interactive Feature Extraction for Engineering Design

Author:

Bang Hyunseung1,Selva Daniel1

Affiliation:

1. Cornell University, Ithaca, NY

Abstract

One of the major challenges faced by the decision maker in the design of complex engineering systems is information overload. When the size and dimensionality of the data exceeds a certain level, a designer may become overwhelmed and no longer be able to perceive and analyze the underlying dynamics of the design problem at hand, which can result in premature or poor design selection. There exist various knowledge discovery and visual analytic tools designed to relieve the information overload, such as BrickViz, Cloud Visualization, ATSV, and LIVE, to name a few. However, most of them do not explicitly support the discovery of key knowledge about the mapping between the design space and the objective space, such as the set of high-level design features that drive most of the trade-offs between objectives. In this paper, we introduce a new interactive method, called iFEED, that supports the designer in the process of high-level knowledge discovery in a large, multiobjective design space. The primary goal of the method is to iteratively mine the design space dataset for driving features, i.e., combinations of design variables that appear to consistently drive designs towards specific target regions in the design space set by the user. This is implemented using a data mining algorithm that mines interesting patterns in the form of association rules. The extracted patterns are then used to build a surrogate classification model based on a decision tree that predicts whether a design is likely to be located in the target region of the tradespace or not. Higher level features will generate more compact classification trees while improving classification accuracy. If the mined features are not satisfactory, the user can go back to the first step and extract higher level features. Such iterative process helps the user to gain insights and build a mental model of how design variables are mapped into objective values. A controlled experiment with human subjects is designed to test the effectiveness of the proposed method. A preliminary result from the pilot experiment is presented.

Publisher

American Society of Mechanical Engineers

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3