Axial Fan Blade Tone Cancellation Using Optimally Tuned Quarter Wavelength Resonators

Author:

Gorny Lee1,Koopmann Gary H.2

Affiliation:

1. Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 157 Hammond Building, State College, PA 16802

2. Center of Acoustics and Vibrations, The Pennsylvania State University, 157 Hammond Building, State College, PA 16802

Abstract

Fan noise challenges noise control engineers in developing products ranging in scale from small ventilation systems to large turbomachines. The dominant noise source in many axial fans is the tonal noise due to rotor/stator interactions at the fundamental blade passing frequency. Flow-excited resonators have been used in the past for minimizing blade tone sound pressure levels (SPLs) generated by centrifugal fans through means of secondary source cancellation. The focus of this research is to extend that cancellation method to axial fans by attaching flow-driven quarter wavelength resonators fitted with optimal mouth perforations around the perimeter of the fan’s shroud. A ducted-fan test facility was developed to measure upstream and downstream noise radiated from a test fan. Resonators were mounted at specific locations around the fan’s shroud to obtain reductions in blade tone SPLs in both flow directions. They were driven into resonance via the unsteady pressure from the passing blades. An analytical model using transmission line theory was developed and validated experimentally to characterize the resonator’s behavior under various flow conditions and mouth geometries. This model was used to predict the resonator’s potential for reducing in-duct blade tones for specific flows and mouth perforation patterns. In a series of experiments to obtain the optimal resonator mouth perforations, it was observed that upstream and downstream SPL attenuations require different placement of the resonator mouth relative to the blade of the fan. With a single tuned resonator it was demonstrated that the fundamental blade tone SPLs can be reduced by as much as 20 dB in either the upstream or the downstream duct but not in both directions simultaneously. This behavior results when combining the resonator’s monopolelike sound field with the dipolelike sound field of the fan’s blades. Further studies are underway to extend the above method to higher pressure fans operating at speeds that generate higher order duct modes.

Publisher

ASME International

Subject

General Engineering

Reference15 articles.

1. G. C. Lauchle , 1995, “Course Notes for ACS 530,” Fundamentals of Flow Induced Noise, The Pennsylvania State University Department of Acoustics, University Park, PA.

2. Aerodynamic Interference Between Moving Blade Rows;Kemp;J. Aeronaut. Sci.

3. Axial Flow Compressor Noise Studies;Tyler;SAE Trans.

4. The Effects of Tip Clearance on the Noise of Low Pressure Axial and Mixed Flow Fans;Fukano;J. Sound Vib.

5. Preliminary Experiments on Active Control of Fan Noise From a Turbofan Engine;Thomas;J. Sound Vib.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3