Numerical Study of Capillary Flow in Microchannels With Alternate Hydrophilic-Hydrophobic Bottom Wall

Author:

Saha Auro Ashish1,Mitra Sushanta K.2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Mumbai 400076, India

2. Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G2G8, Canada

Abstract

A two-dimensional numerical simulation of flow in patterned microchannel with alternate layers of different sizes of hydrophilic and hydrophobic surfaces at the bottom wall is conducted here. The effect of specified contact angle and working fluid (de-ionized (DI) water and ethanol) on capillary phenomena is observed here. The volume of fluid method is used for simulating the free surface flow in the microchannel. Meniscus profiles with varying amplitude and shapes are obtained under the different specified surface conditions. Nonsymmetric meniscus profiles are obtained by changing the contact angles of the hydrophilic and hydrophobic surfaces. A meniscus stretching parameter is defined here and its relation to the capillary phenomena in the microchannel is discussed. Flow variation increases as the fluid traverses alternately between the hydrophilic and hydrophobic regions. The pattern size and the surface tension of the fluid are found to have significant influence on the capillary phenomena in the patterned microchannel. Smaller pattern size produces enhanced capillary effect with DI water, whereas no appreciable gain is observed for ethanol. The magnitude of maximum velocity along the channel height varies considerably with the pattern size and the contact angle. Also, the rms velocity is found to be higher for smaller alternate patterned microchannel. The meniscus average velocity difference at the top and bottom walls increases for a dimensionless pattern size of 0.6 and thereafter it decreases with the increase in pattern size in the case of DI water with hydrophilic-hydrophobic pattern. Using such patterned microchannel, it is possible to manipulate and optimize fluid flow in microfluidic devices, which require enhanced mixing for performing biological reactions.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3