Variations of Middle Cerebral Artery Hemodynamics Due to Aneurysm Clipping Surgery

Author:

Davidson Haleigh1,Scardino Brooke1,Gamage Peshala Thibbotuwawa2,Taebi Amirtahà1

Affiliation:

1. Department of Agricultural and Biological Engineering, Mississippi State University , Mississippi State, MS 39762

2. Department of Biomedical Engineering and Sciences, Florida Institute of Technology , Melbourne, FL 32901

Abstract

Abstract Cerebral aneurysms are potentially life-threatening cerebrovascular conditions where a weakened blood vessel in the brain bulges or protrudes over time. The most common way to treat aneurysms is surgical clipping, an approach where blood flow to the aneurysm is blocked by a permanently placed clip on the artery. However, not all aneurysms are identical; thus, there has been a need for patient-specific treatment options, where each aneurysm is treated based on its individual characteristics. Computational fluid dynamics (CFD) modeling can offer insights to predict how different treatment procedures will affect cerebral hemodynamics. In that regard, the goal of this pilot study was to investigate the flow characteristics and hemodynamic parameters in cerebral arteries before and after neurosurgical clipping. For this purpose, two patient-specific cerebral artery geometries with at least one aneurysm at the middle cerebral artery bifurcation were selected from an online dataset. A companion postclipping model was created for each geometry by removing the aneurysm from the original geometry. Tetrahedral mesh elements were then generated and CFD simulations were conducted to compare the blood velocity profile, secondary flow, flow streamline, and wall shear stress in the computational models with and without aneurysm. Results showed that the clipping treatment led to changes in the velocity profiles, secondary flow structures, and wall shear stress in the middle cerebral artery. In conclusion, our results suggest that CFD modeling can assist in predicting hemodynamic parameters prior to treatment, thus facilitating more tailored planning for each patient’s treatment.

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3