Helical Fins for Concentrated Solar Receivers: Design Optimization and Entropy Analysis

Author:

Pidaparthi Bharath1,Missoum Samy1,Xu Ben2,Li Peiwen1

Affiliation:

1. University of Arizona Department of Aerospace and Mechanical Engineering, , Tucson, AZ 85721

2. Mississippi State University Department of Mechanical Engineering, , Mississippi, MS 39762

Abstract

Abstract Concentrated solar power (CSP) with thermal energy storage (TES) has the potential to achieve grid parity. This can be realized by operating CSP systems at temperatures above 700 °C with high-efficiency sCO2 power cycles. However, operating CSP systems at such temperatures poses several challenges, among which the design of solar receivers to accommodate increased thermal loads is critical. To this end, this work explores and optimizes various swirl-inducing internal fin designs for solar receiver tubes. These fin designs not only improve the thermal performance of receiver tubes but also levelize temperature unevenness caused by non-uniform thermal loading. In this work, the geometric parameters of the fin designs are optimized to maximize the Nusselt number with a constraint on the friction factor. This optimization, however, is computationally intensive, requiring hundreds of simulation calls to computational fluid dynamics (CFD) models. To circumvent this problem, surrogate models are used to approximate the simulation outputs needed during the optimization. In addition, this study also examines the fin designs from an entropy generation perspective. To this end, the entropy contributions from thermal and viscous effects are quantitatively compared while varying the operational Reynolds number.

Funder

Solar Energy Technologies Program

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3