Cyclic Combustion Variability of Dimethyl-Ether-Fueled Agricultural Tractor Engine

Author:

Agarwal Avinash Kumar1,Valera Hardikk1,Kumar Vikram1,Mukherjee Nalini Kanta2,Mehra Shanti1,Nene Devendra2

Affiliation:

1. Indian Institute of Technology Kanpur Engine Research Laboratory, Department of Mechanical Engineering, , Kanpur 208016 , India

2. Centre of Excellence TAFE Motors and Tractors Ltd. , Alwar 301001 , India

Abstract

Abstract Combustion in dimethyl-ether (DME)-fueled engines needs to be assessed carefully for its widespread acceptability from a drivability viewpoint. Since the test engine used in an off-highway segment, it was tested in a steady-state cycle for engine performance, combustion, emissions, and their cyclic variations, which were the only parameters to assess the drivability. This study investigated and analyzed the cyclic variations of a 100% DME-fueled engine equipped with modified mechanical fuel injection equipment. It was compared with baseline diesel to understand its positive and negative aspects. Experiments were conducted at different engine speeds (1200,1600, and 2000 rpm) and loads (No Load, 1.29, 2.59, 3.88, 5.18, and 6.47 bar brake mean effective pressure (BMEP)) . In-cylinder pressure was recorded for 250 consecutive engine cycles, and many combustion parameters were comparatively analyzed for diesel and DME fuelings. The coefficient of variation (COV) of maximum in-cylinder pressure (Pmax) was lower for DME than diesel at 1600 rpm and comparable at the other remaining engine speeds (1200 and 2000 rpm). Variations in COV of Pmax were higher at low loads and negligible at high loads for both test fuels. At 2000 rpm, the crank angle positions at which Pmax occurred were distributed in a narrow range for DME, representing higher combustion stability than baseline diesel. Variations in the maximum rate of pressure rise (RoPRmax) were lower for DME at 3.88 and 6.47 bar BMEP, while these were higher at 1.29 bar BMEP than baseline diesel. COV of indicated mean effective pressure (COVIMEP) decreased from lower to higher loads for diesel and DME fueling at 1600 and 2000 rpm engine speeds. The differences in COVIMEP between diesel and DME were negligible at higher loads, representing engine stability similar to baseline diesel. Combustion parameters assessed indicated that DME fueling led to lower cyclic variations than baseline diesel as the engine operated from lower to higher loads. At lower loads, DME fueling showed higher cyclic variations than baseline diesel.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3