Influence of Microscale Surface Modification on Impinging Flow Heat Transfer Performance

Author:

Taha T. J.1,Lefferts L.2,Van der Meer T. H.3

Affiliation:

1. Thermal Engineering laboratory, Faculty of Engineering and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands e-mails: ;

2. Catalytic Processes and Materials, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

3. Thermal Engineering Laboratory, Faculty of Engineering and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

An experimental approach has been used to investigate the influence of a thin layer of carbon nanotubes (CNTs) on the convective heat transfer performance under impinging flow conditions. A successful synthesis of CNT layers was achieved using a thermal catalytic vapor deposition process (TCVD) on silicon sample substrates. Three different structural arrangements, with fully covered, inline, and staggered patterned layers of CNTs, were used to evaluate their heat transfer potential. Systematic surface characterizations were made using scanning electron microscope (SEM) and confocal microscopy. The external surface area ratio of fully covered, staggered, and inline arrangement was obtained to be 4.57, 2.80, and 2.89, respectively. The surface roughness of the fully covered, staggered, and inline arrangement was measured to be (Sa = 0.365 μm, Sq = 0.48 μm), (Sa = 0.969 μm, Sq = 1.291 μm), and (Sa = 1.668 μm, Sq = 1.957 μm), respectively. On average, heat transfer enhancements of 1.4% and − 2.1% were obtained for staggered and inline arrangement of the CNTs layer. This is attributed to the negligible improvement on the effective thermal resistance due to the small area coverage of the CNT layer. In contrast, the fully covered samples enhanced the heat transfer up to 20%. The deposited CNT layer plays a significant role in reducing the effective thermal resistance of the sample, which contributes to the enhancement of heat transfer.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3