PhyNRnet: Physics-Informed Newton–Raphson Network for Forward Kinematics Solution of Parallel Manipulators

Author:

He Chongjian1,Guo Wei1,Zhu Yanxia1,Jiang Lizhong1

Affiliation:

1. Central South University School of Civil Engineering; National Engineering Research Center of High-Speed Railway Construction Technology, , Changsha 410075 , China

Abstract

Abstract Despite significant performance advantages, the intractable forward kinematics have always restricted the application of parallel manipulators to small posture spaces. Traditional analytical methods and Newton–Raphson method usually cannot solve this problem well due to lack of generality or latent divergence. To address this issue, this study employs recent advances in deep learning to propose a novel physics-informed Newton–Raphson network (PhyNRnet) to rapidly and accurately solve this forward kinematics problem for general parallel manipulators. The main strategy of PhyNRnet is to combine the Newton–Raphson method with the neural network, which helps to significantly improve the accuracy and convergence speed of the model. In addition, to facilitate the network optimization, semi-autoregression, hard imposition of initial/boundary conditions (I/BCs), batch normalization, etc. are developed and applied in PhyNRnet. Unlike previous data-driven paradigms, PhyNRnet adopts the physics-informed loss functions to guide the network optimization, which gives the model clear physical meaning and helps improve generalization ability. Finally, the performance of PhyNRnet is verified by three parallel manipulator paradigms with large postures, where the Newton–Raphson method has generally diverged. Besides, the efficiency analysis shows that PhyNRnet consumes only a small amount of time at each time-step, which meets the real-time requirements.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3