Patterning Curved Three-Dimensional Structures With Programmable Kirigami Designs

Author:

Wang Fei1,Guo Xiaogang1,Xu Jingxian1,Zhang Yihui1,Chen C. Q.2

Affiliation:

1. Department of Engineering Mechanics, CNMM & AML, Tsinghua University, Beijing 100084, China

2. Department of Engineering Mechanics, CNMM & AML, Tsinghua University, Beijing 100084, China e-mail:

Abstract

Originated from the art of paper cutting and folding, kirigami and origami have shown promising applications in a broad range of scientific and engineering fields. Developments of kirigami-inspired inverse design methods that map target three-dimensional (3D) geometries into two-dimensional (2D) patterns of cuts and creases are desired to serve as guidelines for practical applications. In this paper, using programed kirigami tessellations, we propose two design methods to approximate the geometries of developable surfaces and nonzero Gauss curvature surfaces with rotational symmetry. In the first method, a periodic array of kirigami pattern with spatially varying geometric parameters is obtained, allowing formation of developable surfaces of desired curvature distribution and thickness, through controlled shrinkage and bending deformations. In the second method, another type of kirigami tessellations, in combination with Miura origami, is proposed to approximate nondevelopable surfaces with rotational symmetry. Both methods are validated by experiments of folding patterned thin copper films into desired 3D structures. The mechanical behaviors of the kirigami designs are investigated using analytical modeling and finite element simulations. The proposed methods extend the design space of mechanical metamaterials and are expected to be useful for kirigami-inspired applications.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3