The Mode III Crack Problem in Microstructured Solids Governed by Dipolar Gradient Elasticity: Static and Dynamic Analysis

Author:

Georgiadis H. G.1

Affiliation:

1. Mechanics Division, National Technical University of Athens, 1 Konitsis Street, Zographou GR-15773, Greece

Abstract

This study aims at determining the elastic stress and displacement fields around a crack in a microstructured body under a remotely applied loading of the antiplane shear (mode III) type. The material microstructure is modeled through the Mindlin-Green-Rivlin dipolar gradient theory (or strain-gradient theory of grade two). A simple but yet rigorous version of this generalized continuum theory is taken here by considering an isotropic linear expression of the elastic strain-energy density in antiplane shearing that involves only two material constants (the shear modulus and the so-called gradient coefficient). In particular, the strain-energy density function, besides its dependence upon the standard strain terms, depends also on strain gradients. This expression derives from form II of Mindlin’s theory, a form that is appropriate for a gradient formulation with no couple-stress effects (in this case the strain-energy density function does not contain any rotation gradients). Here, both the formulation of the problem and the solution method are exact and lead to results for the near-tip field showing significant departure from the predictions of the classical fracture mechanics. In view of these results, it seems that the conventional fracture mechanics is inadequate to analyze crack problems in microstructured materials. Indeed, the present results suggest that the stress distribution ahead of the tip exhibits a local maximum that is bounded. Therefore, this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur. Also, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as compared to the classical results. The latter can be explained physically since materials with microstructure behave in a more rigid way (having increased stiffness) as compared to materials without microstructure (i.e., materials governed by classical continuum mechanics). The new formulation of the crack problem required also new extended definitions for the J-integral and the energy release rate. It is shown that these quantities can be determined through the use of distribution (generalized function) theory. The boundary value problem was attacked by both the asymptotic Williams technique and the exact Wiener-Hopf technique. Both static and time-harmonic dynamic analyses are provided.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3