Affiliation:
1. Center for Manufacturing Research, Tennessee Technological University, Cookeville, TN 38501
Abstract
Full rotatability identification is a problem frequently encountered in linkage analysis and synthesis. The full rotatability of a linkage refers to a linkage, in which the input may complete a continuous rotation without the possibility of encountering a dead center position. In a complex linkage, the input rotatability of each branch may be different. This paper presents a unified and comprehensive treatment for the full rotatability identification of six-bar and geared five-bar linkages, regardless of the choice of input joints or reference link. A general way to identify all dead center positions and the associated branches is discussed. Special attention and detail discussion is given to the more difficult condition, in which the input is not given through a joint in the four-bar loop or to a gear link. A branch without a dead center position has full rotatability. Using the concept of joint rotation space, the branch of each dead center position, and hence, the branch without a dead center position can be identified. One may find the proposed method to be generally and conceptually straightforward. The treatment covers all linkage inversions.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献