The Beneficial Contribution of Realistic Autofrettage to the Load-Carrying Capacity of Thick-Walled Spherical Pressure Vessels

Author:

Perl M.12,Perry J.3

Affiliation:

1. Fellow ASME

2. Departamento de Ingenierıá Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Avda. Vicunã Mackenna 4860, Santiago de Chile, Chile

3. Department of Mechanical Engineering, Pearlstone Center for Aeronautical Engineering Studies, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Abstract

Increased strength-to-weight ratio and extended fatigue life are the main objectives in the optimal design of modern pressure vessels. These two goals can mutually be achieved by creating a proper residual stress field in the vessel’s wall by a process known as autofrettage. Although there are many studies that have investigated the autofrettage problem for cylindrical vessels, only a few of such studies exist for spherical ones. Because of the spherosymmetry of the problem, autofrettage in a spherical pressure vessel is treated as a one-dimensional problem and solved solely in terms of the radial displacement. The mathematical model is based on the idea of solving the elastoplastic autofrettage problem using the form of the elastic solution. Substituting Hooke’s equations into the equilibrium equation and using the strain-displacement relations yield a differential equation, which is a function of the plastic strains. The plastic strains are determined using the Prandtl–Reuss flow rule and the differential equation is solved by the explicit finite difference method. The existing 2D computer program, for the evaluation of hydrostatic autofrettage in a thick-walled cylinder, is adapted to handle the problem of spherical autofrettage. The presently obtained residual stress field is then validated against three existing solutions emphasizing the major role the material law plays in determining the autofrettage residual stress field. The new code is applied to a series of spherical pressure vessels yielding two major conclusions. First, the process of autofrettage increases considerably the maximum safe pressure that can be applied to the vessel. This beneficial effect can also be used to reduce the vessel’s weight rather than to increase the allowable internal pressure. Second, the specific maximum safe pressure increases as the vessel becomes thinner. The present results clearly indicate that autofrettaging of spherical pressure vessels can be very advantageous in various applications.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strengthening of hollow spheres using combined method of hydraulic and thermal autofrettage;Прикладная математика и механика;2024-02-15

2. Strength optimization design of spherical hulls for deep-sea submersibles: A hydraulic autofrettage approach in external pressure vessels;Ocean Engineering;2023-11

3. Analysis of thick-walled spherical shells subjected to external pressure: Elastoplastic and residual stress analysis;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2019-10-21

4. Water hammer protective performance of a spherical air vessel caused by a pump trip;Water Supply;2019-04-17

5. Numerical evaluation of an internally cracked autofrettaged spherical pressure vessel;PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2019 (ICCMSE-2019);2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3