Affiliation:
1. School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019
2. Fellow ASME
Abstract
A numerical study has been performed to further investigate the flow and temperature fields in layered porous cavity. The geometry considered is a two-dimensional square cavity comprising of three or four vertical sublayers with nonuniform thickness and distinct permeability. The cavity is subjected to differential heating from the vertical walls. The results obtained are used to further evaluate the capacity of the lumped-system analysis in the prediction of heat transfer results of layered porous cavities. It has been found that predictions by the lumped-system model are reasonably good for the range of Rayleigh numbers encountered in engineering applications. In addition, the predictions improve when the number of sublayers increases as well as the sublayer thickness becomes more uniform. Thus, it proves that the lumped-system analysis can offer a quick estimate of heat transfer result from a layered porous cavity with reasonable accuracy.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献