Gelation Performance and Microstructure Study of Chromium Gel and Phenolic Resin Gel in Bulk and Porous Media

Author:

Zhang Jian12,He Hong3,Wang Yefei4,Xu Xiaoli4,Zhu Yuejun12,Li Ruyin12

Affiliation:

1. State Key Laboratory of Offshore Oil Exploitation, Beijing 10027, China;

2. CNOOC Research Institute, Beijing 10027, China

3. College of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266555, China e-mail:

4. College of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266555, China

Abstract

Polymer gel has been widely used to control excessive water production in many mature oilfields; however, there still exist some problems concerning the differences between gelation behavior in bulk and porous media. In this paper, the gelation time and microstructures of chromium gel and phenolic resin gel in bulk and porous media were studied. Results showed that for chromium gel, the initial gelation time in porous media was about 2.5–3.5 times of that in bulk and final gelation time in porous media was about 6.0–7.0 times of that in bulk. While for phenolic resin gel, the initial gelation time in porous media was about 1.0–1.5 times of that in bulk, and final gelation time in porous media was about 1.5–2.0 times of that in bulk. The morphology of chromium gel and phenolic resin gel in bulk were dendritic shape structure and 3D network structure, respectively. However, the morphology of chromium gel and phenolic resin gel in porous media were both dense gel membranes at low magnification. While at higher magnification, compared with the branchlike cluster structure of chromium gel in porous media, the network of phenolic resin gel was more developed. The experimental results can provide the basis for determining well shut off time and reveal the differences of gel microstructures between the chromium gel and phenolic gel in bulk and porous media.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3