Mass Transfer to Fluids Flowing Through Rotating Nonaligned Straight Tubes

Author:

Berman J.1,Mockros L. F.2

Affiliation:

1. Department of Chemical Engineering, University of Kentucky, Lexington, Ky. 40506

2. The Technological Institute, Biomedical Engineering Division, Northwestern University, Evanston, Ill. 60201

Abstract

Relatively inefficient heat/mass transfer is characteristic of tubular devices if the Reynolds number is low. One method of improving the heat/mass transfer efficiency of such devices is by inducing transverse laminar secondary circulations that are superimposed on the primary flow field; the resulting transverse velocity components lead to fluid mixing and hence augmented mass transfer in the tube lumen. The present work is a theoretical and experimental investigation of the enhanced transport in rotating, nonaligned, straight tubes, a method of transport enhancement that utilizes Coriolis acceleration to create transverse fluid mixing. This technique couples the transport advantages of coiled tubes with the design advantages of straight tubes. The overall mass balance equation is numerically solved for transfer into fluids flowing steadily through rotating nonaligned straight tubes. This solution, for small Coriolis disturbances, incorporates a third order perturbation solution for the primary and secondary flow fields. For sufficiently small Coriolis disturbances the bulk concentration increase is found to be uniquely determined by the value of a single similarity parameter. As the Coriolis disturbance is increased, however, two additional parameters are required to accurately characterize the mass transfer. In general, increasing the Coriolis accelerations results in an increase in mass transfer. There are solution regimes, however, in which increasing this acceleration can lead to a decrease in mass transfer efficiency. This interesting phenomena, which has important design implications, appears to result from velocity-weighting effects on the exiting sample. Experiments, involving the measurement of oxygen transferred into water and blood, produced data that agree with the theoretical predictions.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3