Assessment of the Predictive Capability of VERA—CS for CASL Challenge Problems

Author:

Athe Paridhi1,Jones Christopher2,Dinh Nam1

Affiliation:

1. Department of Nuclear Engineering, North Carolina State University, Campus Box 7909, Raleigh, NC 27695-7909

2. Department of Civil Engineering, Kansas State University, 1701 C Platt Street, Manhattan, KS 66506

Abstract

Abstract This paper describes the process for assessing the predictive capability of the Consortium for the advanced simulation of light-water reactors (CASL) virtual environment for reactor applications code suite (VERA—CS) for different challenge problems. The assessment process is guided by the two qualitative frameworks, i.e., phenomena identification and ranking table (PIRT) and predictive capability maturity model (PCMM). The capability and credibility of VERA codes (individual and coupled simulation codes) are evaluated. Capability refers to evidence of required functionality for capturing phenomena of interest while credibility refers to the evidence that provides confidence in the calculated results. For this assessment, each challenge problem defines a set of phenomenological requirements (based on PIRT) against which the VERA software is evaluated. This approach, in turn, enables the focused assessment of only those capabilities that are relevant to the challenge problem. The credibility assessment using PCMM is based on different decision attributes that encompass verification, validation, and uncertainty quantification (VVUQ) of the CASL codes. For each attribute, a maturity score from zero to three is assigned to ascertain the acquired maturity level of the VERA codes with respect to the challenge problem. Credibility in the assessment is established by mapping relevant evidence obtained from VVUQ of codes to the corresponding PCMM attribute. The illustration of the proposed approach is presented using one of the CASL challenge problems called chalk river unidentified deposit (CRUD) induced power shift (CIPS). The assessment framework described in this paper can be considered applicable to other M & S code development efforts.

Funder

U.S. Department of Energy

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Reference67 articles.

1. Quantifying Reactor Safety Margins: Application of Code Scaling Applicability and Uncertainty Evaluation Methodology to a Large-Break Loss-of-Coolant Accident;CSAU,1989

2. Regulatory Guide 1.203: Transient and Accident Analysis Methods;EMDAP,2005

3. Modeling and Simulation Challenges Pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL);J. Comput. Phys.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3