On-Line Energy-Based Milling Chatter Detection

Author:

Caliskan Hakan1,Kilic Zekai Murat2,Altintas Yusuf3

Affiliation:

1. Postdoctoral Researcher, Manufacturing Automation Laboratory, Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada e-mail:

2. Mem. ASME Postdoctoral Researcher, Manufacturing Automation Laboratory, Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada e-mail:

3. Professor Fellow ASME Manufacturing Automation Laboratory, Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada e-mail:

Abstract

Milling exhibits forced vibrations at tooth passing frequency and its harmonics, as well as chatter vibrations close to one of the natural modes. In addition, there are sidebands, which are spread at the multiples of tooth passing frequency above and below the chatter frequency, and make the robust chatter detection difficult. This paper presents a novel on-line chatter detection method by monitoring the vibration energy. Forced vibrations are removed from the measurements in discrete time domain using a Kalman filter. After removing all periodic components, the amplitude and frequency of chatter are searched in between the two consecutive tooth passing frequency harmonics using a nonlinear energy operator (NEO). When the energy of any chatter component grows relative to the energy of forced vibrations, the presence of chatter is detected. The proposed method works in discrete real time intervals, and can detect the chatter earlier than frequency domain-based methods, which rely on fast Fourier Transforms. The method has been experimentally validated in several milling tests using both microphone and accelerometer measurements, as well as using spindle speed and current signals.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3