Thermal ‘Fingerprinting’ of Cells Using FTIR

Author:

Balasubramanian Saravana Kumar1,Wolkers Williem F.1,Bischof John C.1

Affiliation:

1. University of Minnesota, Minneapolis, MN

Abstract

Every cell is composed of a combination of proteins and lipids that define the cell. The biomolecular composition of a cell can yield a unique IR spectral profile, termed chemical “fingerprint”, in the FTIR. Even though it provides overall information on the state and composition, the challenge is in obtaining a more sensitive and mechanistically relevant “fingerprint” of a cell particularly in the protein regime where numerous detection assays are now based [1]. Heat induced denaturation of proteins in a cell, which can be termed as thermal “fingerprint”, offers detailed and mechanistically relevant information for identification and characterization of different cells. For this study, the chemical and the thermal “fingerprint” of four different cell types are characterized and compared — human dermal fibroblasts (HDFs), LNCaP prostate tumor cells, smooth muscle cells (SMCs) and microvascular endothelial cells (MVECs). Multiple protein denaturation peaks were observed during heating from room temperature to 90°C at 1°C/min that are cell specific. A correlation coefficient (r) was used to compare responses between the cell types (higher ‘r’ implies closer resemblance). For the chemical “fingerprint”, r values of cells compared to HDFs are 0.97 for MVECs, 0.91 for LNCaPs and 0.70 for SMCs. Similarly, for the thermal “fingerprint”, r values of cells compared to HDFs are 0.86 for MVECs, 0.73 for LNCaPs and 0.54 for SMCs. The deviation of ‘r’ values from 1.00 is wider in the case of the thermal “fingerprint” than the chemical “fingerprint”. This result demonstrates that thermal “fingerprinting”, based on protein denaturation, offers a mechanistic basis for enhanced differentiation between cells as compared to chemical “fingerprinting”. Extensive applications ranging from rapid disease diagnostics, forensics, cell culture quality control, cell sorting techniques etc. may benefit from this approach.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3