A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages

Author:

Deshpande Shrinath1,Purwar Anurag2

Affiliation:

1. Computer-Aided Design and Innovation Lab, Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794-2300

2. Computer-Aided Design and Innovation Lab, Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794-2300 e-mail:

Abstract

Synthesizing circuit-, branch-, or order-defects-free planar four-bar mechanism for the motion generation problem has proven to be a difficult problem. These defects render synthesized mechanisms useless to machine designers. Such defects arise from the artificial constraints of formulating the problem as a discrete precision position problem and limitations of the methods, which ignore the continuity information in the input. In this paper, we bring together diverse fields of pattern recognition, machine learning, artificial neural network, and computational kinematics to present a novel approach that solves this problem both efficiently and effectively. At the heart of this approach lies an objective function, which compares the motion as a whole thereby capturing designer's intent. In contrast to widely used structural error or loop-closure equation-based error functions, which convolute the optimization by considering shape, size, position, and orientation of the given task simultaneously, this objective function computes motion difference in a form, which is invariant to similarity transformations. We employ auto-encoder neural networks to create a compact and clustered database of invariant motions of known defect-free linkages, which serve as a good initial choice for further optimization. In spite of highly nonlinear parameters space, our approach discovers a wide pool of defect-free solutions very quickly. We show that by employing proven machine learning techniques, this work could have far-reaching consequences to creating a multitude of useful and creative conceptual design solutions for mechanism synthesis problems, which go beyond planar four-bar linkages.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference31 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3