Geometric Constraint Solving With Solution Selectors

Author:

Bettig Bernhard1,Kale Vaibhav2

Affiliation:

1. Department of Mechanical Engineering, West Virginia University Institute of Technology, Montgomery, WV 25136 e-mail:

2. Mechanical Engineering-Engineering Mechanics Department, Michigan Technological University, Houghton, MI 49931 e-mail:

Abstract

Current parametric CAD systems are based on solving equality types of constraints between geometric objects and parameters. This includes algebraic equations constraining the values of variables, and geometric constraints constraining the positions of geometric objects. However, to truly represent design intent, next-generation CAD systems must also allow users to input other types of constraints such as inequality constraints. Inequality constraints are expressed as inequality expressions on variables, or as geometric constraints that force geometric objects to be on specific sides or have specific orientations with respect to other objects. The research presented here investigates whether the frontier algorithm can be extended to solve geometry positioning problems involving systems of equality- and inequality-based declarations in which the inequality-based declarations are used as solution selectors to choose from multiple solutions inherently arising when solving these systems. It is found that these systems can be decomposed by the frontier algorithm in a manner similar to purely equality-based constraint systems, however they require tracking and iterating through multiple solutions and in many cases may require backtracking through the solution sequence. The computational complexity of the new algorithm is found to be the same as the frontier algorithm in the planning phase and linear in the execution phase with respect to the size of the problem but exponential with respect to the distance of solution selection steps from the satisfaction steps they control.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3