Modeling, Control, and Stability Analysis of Heterogeneous Thermostatically Controlled Load Populations Using Partial Differential Equations

Author:

Ghaffari Azad1,Moura Scott2,Krstić Miroslav1

Affiliation:

1. Department of Mechanical & Aerospace Engineering, University of California, San Diego, La Jolla, CA 92039-0411 e-mail:

2. Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720 e-mail:

Abstract

Thermostatically controlled loads (TCLs) account for more than one-third of the U.S. electricity consumption. Various techniques have been used to model TCL populations. A high-fidelity analytical model of heterogeneous TCL (HrTCL) populations is of special interest for both utility managers and customers (that facilitates the aggregate synthesis of power control in power networks). We present a deterministic hybrid partial differential equation (PDE) model which accounts for HrTCL populations and facilitates analysis of common scenarios like cold load pick up, cycling, and daily and/or seasonal temperature changes to estimate the aggregate performance of the system. The proposed technique is flexible in terms of parameter selection and ease of changing the set-point temperature and deadband width all over the TCL units. We investigate the stability of the proposed model along with presenting guidelines to maintain the numerical stability of the discretized model during computer simulations. Moreover, the proposed model is a close fit to design feedback algorithms for power control purposes. Hence, we present output- and state-feedback control algorithms, designed using the comparison principle and Lyapunov analysis, respectively. We conduct various simulations to verify the effectiveness of the proposed modeling and control techniques.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3