Suppression of Lateral and Torsional Stick–Slip Vibrations of Drillstrings With Impact and Torsional Dampers

Author:

Hu Lingnan1,Palazzolo Alan2,Karkoub Mansour3

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX 77843 e-mail:

2. TEES Professor Fellow ASME Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX 77843 e-mail:

3. Professor Department of Mechanical Engineering, Texas A&M University at Qatar, Doha 23874, Qatar e-mail:

Abstract

Violent drillstring vibrations in a well should be suppressed to prevent premature failure of the drillstring parts and borehole wall and enhance the drilling process. This paper presents novel centralized impact dampers and torsional vibration dampers for lateral and torsional stick–slip vibration suppression which will function well in the harsh environment in the well due to their all-metal construction. A drillstring vibration model is used in this paper to simulate coupled lateral and torsional vibrations of the drillstring with impact and torsional dampers installed in the drill collar (DC). The high-fidelity model utilizes Timoshenko beam finite elements (FEs) and includes stress-stiffening effects to account for the gravity and axial loading effect on the transverse string stiffness. The rotational motions of the impactors result from dry friction tangential contact forces that occur when they contact the DC or sub. The tangential forces utilize a nonlinear Hertzian contact restoring force and a nonlinear, viscous contact damping force, in place of the typical coefficient of restitution (COR) model that cannot provide the required normal and tangential contact forces. The primary conclusions drawn from the simulation results are: (1) both the lateral vibration of the drillstring that is close to the bending critical speeds and the vibration induced by destabilizing forces can be suppressed by impact dampers and (2) the torsional stick–slip motion of the drillstring can be mitigated by the torsional damper.

Publisher

ASME International

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3