Numerical Investigation on Surface Crack Growth in Steel Plates Repaired With Carbon Fiber-Reinforced Polymer

Author:

Li Zongchen1,Jiang Xiaoli1,Hopman Hans1

Affiliation:

1. Delft University of Technology, Delft, Netherlands

Abstract

Abstract Fatigue crack growth is a major challenge to the structural integrity of steel structures. In technical practice, surface cracks are of great importance since cracks in components and structures often exhibit this geometry. Fiber-reinforced polymer (FRP) strengthening technology is a reliable technique to repair cracks in steel structures. Yet the investigation on FRP repairing surface cracks in steel structures is lacking. What’s more, the crack growth might cause crack-induced debonding at the interface of FRP reinforcement, generating negative effects to the reinforcement effectiveness. Unfortunately, there are limited studies in the open literature for this issue. In this paper, we conduct the investigation on surface crack growth in steel plates reinforced with Carbon Fiber-reinforced polymer (CFRP) under tensile load. Three-dimensional finite element models are built to predict the stress intensity factors of the surface cracks. The crack-induced debonding is considered in the finite element analysis by introducing the cohesive zone model and a bond failure criterion. In accordance with Paris law, surface crack growth rate of different models are predicted. The influential parameters of crack-induced debonding are analyzed by means of parametric studies. The results indicate that CFRP reinforcement could significantly decrease the surface crack growth rate, while the crack-induced debonding might generate negative effect on CFRP reinforcement. In addition, the crack-induced debonding is affected by not only the interfacial properties, but also the reinforcement scheme, such as thickness of the adhesive layer, CFRP layer number and its elastic modulus, and the depth of surface cracks.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3