On Signatures and Features of Modulational Instability in Ocean Waves

Author:

Babanin Alexander V.1

Affiliation:

1. University of Melbourne, Melbourne, Australia

Abstract

Abstract Modulational instability of nonlinear waves in dispersive environments is known across a broad range of physical media, from nonlinear optics to waves in plasmas. Since it was discovered for the surface water waves in the early 60s, it was found responsible for, or able to contribute to the topics of breaking and rogue waves, swell, ice breakup, wave-current interactions and perhaps even spray production. Since the early days, however, the argument continues on whether the modulational instability, which is essentially a one-dimensional phenomenon, is active in directional wave fields (that is whether the realistic directional spectra are narrow enough to maintain such nonlinear behaviours). Here we discuss the distinct features of the evolution of nonlinear surface gravity waves, which should be attributed as signatures to this instability in oceanic wind-generated wave fields. These include: wave-breaking threshold in terms of average steepness; upshifting of the spectral energy prior to breaking; oscillations of wave asymmetry and skewness; energy loss from the carrier waves in the course of the breaking. We will also refer to the linear/nonlinear superposition of waves which is often considered a counterpart (or competing) mechanism responsible for breaking or rogue waves in the ocean. We argue that both mechanisms are physically possible and the question of in situ abnormal waves is a problem of their relative significance in specific circumstances.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3