Effect of Direct Liquid Cooling Technology With Flow Guide Integration on Avionics Devices Thermal and Electrical Performance

Author:

Qi Wenliang12,Liu Tingting2,Zhang Zichun2,Wang Bin2,Liu Qi3,Xu Yingjie4

Affiliation:

1. Northwestern Polytechnical University School of Mechanical Engineering, , Xi’an 710072 , China ;

2. Aviation Industry Corporation of China, Ltd. Xi'an Aeronautics Computing Technique Research Institute, , Xi’an 710068 , China

3. China Aerodynamics Research and Development Center State Key Laboratory of Aerodynamics, , Mianyang 621000 , China

4. Northwestern Polytechnical University School of Mechanical Engineering, , Xi’an 710072 , China

Abstract

Abstract With the application of various high-power electronic devices to improving aircraft comprehensive performance, there has been a significant interest in the use of high heat flux dissipation technology to maintain an effective and safe operation for electronic devices. This article presents a numerical study on the thermal and electrical performance of the avionics server module by using single-phase immersion cooling technology with flow distributor and investigates the influence of heat dissipation capacity on the thermal performance of the avionics server module and DC IR-drop of printed circuit board power distribution network (PDN). The simulation results showed that a higher dielectric fluid flowrate can be provided b flow distributor with the same pumping power, and the maximum temperature of the hot spot was 4–8 °C lower than the module without a flow distributor. The result confirmed the improved flow performance and enhances heat transfer of the hot spot for the module with a flow distributor. However, the module without the flow distributor showed better comprehensive cooling performance with about 10–15% reduction in average Nusselt number with an increase in Re. The discrepancy of PDN DC IR-drop under different Re values was constant at 3% for different design geometries, which means the effect of the flow distributor on power delivery capability can be neglected.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3