Virtual Gas Turbines Part II: An Automated Whole-Engine Secondary Air System Model Generation

Author:

Kulkarni Davendu1,di Mare Luca2

Affiliation:

1. Rolls-Royce plc., P.O. Box 31, Derby DE24 8BJ, UK

2. Department of Engineering Science, Tutorial Fellow of St John's College, Oxford Thermofluids Institute, Oxford OX1 3PJ, UK

Abstract

Abstract The design and analysis of the secondary air system (SAS) of gas turbine engine is a complex and time-consuming process because of the complicated topology and iterative nature of SAS design. The conventional SAS design-analysis model generation process is quite tedious and inefficient. It is still largely dependent on human expertise and thus incurs high time-cost. This paper presents an automated, whole-engine SAS flow network model generation methodology. This method accesses a prebuilt feature-based whole-engine geometry model and transforms the geometry features into the features suitable for SAS flow network analysis. The proposed method extracts both the geometric and non-geometric information from the engine geometry model such as rotational frames, materials, and boundary conditions. Apart from ensuring geometric consistency, this methodology also establishes a bidirectional information exchange protocol between the engine geometry model and the SAS flow network model, which enables to make engine geometry modifications based on SAS analysis results. The application of this feature mapping methodology is demonstrated by generating the SAS flow network model of a modern three-shaft gas turbine engine. This flow network model is generated within a few minutes, without any human intervention, which significantly reduces the SAS design-analysis time cost. The proposed methodology seamlessly links the geometry and the air system modelers of Virtual Gas Turbines simulation framework and thus allows performing a large number of whole-engine SAS simulations, design optimizations and fast redesign activities.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference44 articles.

1. Secondary Air System Component Modeling for Engine Performance Simulations;ASME J. Eng. Gas Turbines Power,2009

2. On the Performance of Gas Turbine Secondary Air Systems,2001

3. Gas Turbine Engine Internal Air Systems: A Review of Requirements and the Problems,1975

4. Some Aerodynamic Aspects of Engine Secondary Air Systems;ASME J. Eng. Gas Turbines Power,1990

5. FLOWNET: A Computer Program for Calculating Secondary Air Flow Conditions in a Network of Turbomachinery,1977

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3