Impact of Variations in Water Concentration on the Nanomechanical Behavior of Type I Collagen Microfibrils in Annulus Fibrosus

Author:

Bhattacharya Shambo1,Dubey Devendra K.1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India

Abstract

Abstract Radial variation in water concentration from outer to inner lamellae is one of the characteristic features of annulus fibrosus (AF). In addition, water concentration changes are also associated with intervertebral disc (IVD) degeneration. Such changes alter the chemo-mechanical interactions among the biomolecular constituents at molecular level, affecting the load-bearing nature of IVD. This study investigates mechanistic impacts of water concentration on the collagen type I microfibrils in AF using molecular dynamics simulations. Results show, in axial tension, that increase in water concentration (WC) from 0% to 50% increases the elastic modulus from 2.7 GPa to 3.9 GPa. This is attributed to combination of shift in deformation from backbone straightening to combined backbone stretching– intermolecular sliding and subsequent strengthening of tropocollagen–water (TC-water-TC) interfaces through water bridges and intermolecular electrostatic attractions. Further increase in WC to 75% reduces the modulus to 1.8 GPa due to shift in deformation to polypeptide straightening and weakening of TC-water-TC interface due to reduced electrostatic attraction and increase in the number of water molecules in a water bridge. During axial compression, increase in WC to 50% results in increase in modulus from 0.8 GPa to 4.5 GPa. This is attributed to the combination of the development of hydrostatic pressure and strengthening of the TC-water-TC interface. Further increase in WC to 75% shifts load-bearing characteristic from collagen to water, resulting in a decrease in elastic modulus to 2.8 GPa. Such water-mediated alteration in load-bearing properties acts as foundations toward AF mechanics and provides insights toward understanding degeneration-mediated altered spinal stiffness.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3