Proxy Position Prediction Based Continuous Local Patch for Smooth Haptic Rendering

Author:

Liu Yong1,Chou Wusheng2,Yan Shumin3

Affiliation:

1. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China; Robotics Institute, Beihang University, Beijing 100191, China e-mail:

2. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China e-mail:

3. Robotics Institute, Beihang University, Beijing 100191, China

Abstract

The edge effect is a problem that has to be tackled when performing haptic interaction with discontinuous primitives. In this paper, an innovated algorithm is designed to render a smooth haptic feedback force with a locally constructed C1 continuous Gregory patch. The continuous Gregory patch is generated from n-sided polygon, which is determined by a real-time contact region prediction method. The contact region prediction algorithm, derived from the dynamic model of the haptic device, is able to deal with the inconsistency of the local nearest point and global nearest point when obtaining the potential contact region. The parametric patch can be achieved in three steps employing boundary generation, height model interpolation, and Gregory patch construction. For a better shape preserving character, the height model of the contact region is respected by the parametric Gregory patch construction algorithm. The generated patch is continuous on boundaries and can render continuous feedback force as the proxy point transits between different patches. Since the presented scheme needs fewer primitives than conventional method, it consumes less memory and runs more efficiently in computation. The experimental results have shown that the smooth haptic force can be achieved with the proposed method. Meanwhile, the motion predictor also presents a good performance in the validating experiment.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3