Effects of Ultrasound and Strain Rate on Tensile Mechanical Behavior of Thermoplastic Poly Urethane Thin Films

Author:

Balakrishnan Anandh1,Saha Mrinal C.1

Affiliation:

1. School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019

Abstract

Thermoplastic poly urethane (TPU) is a diblock copolymer which naturally phase segregates into thermodynamically incompatible hard (H) and soft (S) segments. The size of the segments and their spatial distribution can significantly affect the microstructure and mechanical properties of the material. In this paper, we investigated the effect of duration of exposure to ultrasound on the solution prior to film formation on the final film properties. The response variable for the study was primarily mechanical properties of the TPU thin films fabricated via a solution route utilizing tetra hydro furan as a solvent. The times of sonication were varied between 30 min and 90 min, while all films were fabricated at average thickness of 20 ± 5 μm. The mechanical tests have been conducted at two different displacement rates of 5 and 10 mm/min. Our results indicated that (relative to untreated TPU) ultrasound tends not to deteriorate the fracture strength, strain and yet improve the fracture toughness. We attribute these results to subtle events at the H and S segment/domain levels. To further understand these microstructural variations, we conducted differential scanning calorimetry scan tests between 25 °C and 200 °C at 5 °C/min on untested and tested TPU samples of all types. This data showed a delicate sonication time dependent trend and has been interpreted in conjunction with our mechanical test data. Transition temperatures, enthalpies, and specific heat capacities have been computed for these cases.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3