Correlating Microscale Thermal Conductivity of Heavily-Doped Silicon With Simultaneous Measurements of Stress

Author:

Gan Ming1,Tomar Vikas1

Affiliation:

1. Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47906

Abstract

The functioning and performance of today’s integrated circuits and sensors are highly affected by the thermal properties of microscale silicon structures. Due to the well known size effect, the thermal properties of microscale silicon structures are not the same as those of the bulk silicon. Furthermore, stress/strain inside microscale silicon structures can significantly affect their thermal properties. This article presents the first thermal conductivity measurements of a microscale silicon structure under applied compressive stress at 350 K. Atomic force microscope (AFM) cantilevers made of doped single-crystal silicon were used as samples. A resistance temperature detector (RTD) heater attached to another RTD sensor was used as the heating module, which was mounted onto a nanoindentation test platform. This integrated system applied compressive load to the cantilever in the longitudinal direction while supplying heat. The thermal conductivity of the cantilevers was calculated using steady state heat conduction equation. The result shows that the measured thermal conductivity varies from 110 W/(m·K) to 140 W/(m·K) as compressive strain varies from 0.1% to 0.3%. Thermal conductivity is shown to increase with increase in compressive strain. These results match with the published simulation values. The measured thermal conductivity and stress values vary in the similar manner as a function of applied strain.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference38 articles.

1. Temperature measurements of semiconductor devices—A Review;Blackburn

2. International Technology Roadmap for Semiconductors, 2010.

3. Prediction and Measurement of Temperature-Fields in Silicon-on-Insulator Electronic-Circuits;Goodson;ASME Trans. J. Heat Transfer

4. Thermal Conductivity of Silicon + Germanium From 3 Degrees K to Melting Point;Glassbrenner;Phys. Rev. A—Gen. Phys.

5. Thermal Conductivity-Metallic Elements and Alloys;Touloukian

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3