Affiliation:
1. Energy Division, College of Engineering, The University of Iowa, Iowa City, Iowa 52242
Abstract
A differential turbulence model is used to predict the decay behavior of turbulent buoyant jets in a uniform environment at rest. The turbulent stresses and heat fluxes are modeled by the algebraic expressions while the differential transport equations are solved for the kinetic energy of turbulence, k, the rate of dissipation of turbulence kinetic energy, ε, and the fluctuating temperature T′2. The numerical result correlated with a unified scaling law was shown to fall into a single curve for the flows beyond the zone of flow establishment. The flow characteristics are then classified into a non-buoyant region, an intermediate region and a plume region. The predicted results show that the buoyant jets is accelerated in the zone of flow establishment. Equations for decay of velocity, density, and turbulent quantities are given from the non-buoyant region to the plume region for both plane and round buoyant jets.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献