On the Behavior of Statistical Models Used for Design

Author:

Wirsching P. H.1

Affiliation:

1. Aerospace and Mechanical Engineering, The University of Arizona, Tucson, Ariz.

Abstract

In probabilistic design, it is common practice to use two parameter statistical models (e.g., normal, lognormal) to describe random design factors. However, given a random sample of data, it is often difficult to distinguish which of several competing models provides the best description. It is demonstrated herein that the choice of model has a profound effect on probability estimates, particularly in the tails of the distributions. Given only the mean and standard deviation of a random variable, the Tchebycheff or Camp-Meidell inequalities can be used to provide upper-bound estimates of probabilities. However, these inequalities are usually too weak for design purposes. Probability models which yield more reasonable results are proposed. The two parameter exponential and power models are proposed for quasi-upper bounds of right and left tail probabilities, respectively. The exponential and power models are used for stress and strength, respectively, to derive, from inference theory, quasi-upper bounds for probability of failure of a structural element.

Publisher

ASME International

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generation of a Failure Model through Probabilistic “ Stress–Strength ” Interaction in a Context of Poor Information;Applied Reliability for Industry 1;2023-04-21

2. Estimation of stress-strength reliability based on tail-modelling;Applied Stochastic Models and Data Analysis;1992-03

3. A parametric model for prediction of low toughness values in materials;Mathematical and Computer Modelling;1989

4. A parametric solution for simple stress—strength model of failure with an application;Journal of Computational and Applied Mathematics;1988-08

5. On estimation of failure probability;Reliability Engineering & System Safety;1988-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3