Disk and Strip Forging with Side Surface Foldover—Part 2: Evaluation of the Upper-Bound Solutions

Author:

Kohser R. A.1,Avitzur B.2

Affiliation:

1. University of Missouri-Rolla, Rolla, Mo.

2. Dept. of Metallurgy and Materials Science; Institute for Metal Forming, Lehigh University, Bethlehem, Pa.

Abstract

The upper-bound solutions developed in Part 1 are evaluated with regard to their ability to produce a lower value for required power (load, pressure, or work). Comparisons made with existing solutions such as the triangular field solution and one-zone bulge solution show that for strip, each solution has a domain of geometry and friction in which it is superior. The new solution produces a lower upper-bound for conditions of high interface friction and relatively thin specimen, the area where foldover is the observed mode of flow. For solid cylindrical disks, the solution fails to improve upon existing analyses, but comes sufficiently close to warrant additional study. After evaluation, these solutions were then used in an incremental technique to model the geometry and flow as a function of reduction in height. Results appear most encouraging, and the relative simplicity of the technique when compared with present alternatives is quite attractive.

Publisher

ASME International

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3