A Coarse Model for the Multiaxial Elastic-Plastic Response of Ductile Porous Materials

Author:

Schiffer Andreas1,Zacharopoulos Panagiotis2,Foo Dennis2,Tagarielli Vito L.2

Affiliation:

1. Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE e-mail:

2. Department of Aeronautical Engineering, Imperial College London, London SW7 2AZ, UK e-mail:

Abstract

We propose a modeling strategy to predict the mechanical response of porous solids to imposed multiaxial strain histories. A coarse representation of the microstructure of a porous material is obtained by subdividing a volume element into cubic cells by a regular tessellation; some of these cells are modeled as a plastically incompressible elastic-plastic solid, representing the parent material, while the remaining cells, representing the pores, are treated as a weak and soft compressible solid displaying densification behavior at large compressive strains. The evolution of homogenized deviatoric and hydrostatic stress is explored for different porosities by finite element simulations. The predictions are found in good agreement with previously published numerical studies in which the microstructural geometry was explicitly modeled.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictions of the Mechanical Response of Sintered FGH96 Powder Compacts;Journal of Engineering Materials and Technology;2019-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3