Experimental Investigation of the Effect of Shale Anisotropy Orientation on the Main Drilling Parameters Influencing Oriented Drilling Performance in Shale

Author:

Abugharara A. N.1,Mohamed Bashir2,Hurich C.3,Molgaard J.4,Butt S. D.2

Affiliation:

1. Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL, A1B3X5, Canada email:

2. Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL, A1B3X5, Canada e-mail:

3. Faculty of Science—Earth Sciences, Memorial University of Newfoundland, St. John’s, NL, A1B3X5, Canada email:

4. Department of Mechanical Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL, A1B3X5, Canada e-mail:

Abstract

The influence of shale anisotropy and orientation on shale drilling performance was studied with an instrumented laboratory drilling rig with a 38.1-mm dual-cutter polycrystalline diamond compact (PDC) bit, operating at a nominally fixed rotational speed with a constant rate of flow of drilling fluid—water. However, the rate of rotation (rpm) was affected by the weight on bit (WOB), as was the torque (TRQ) produced. The WOB also affected the depth of cut (DOC). All these variables, WOB, rpm, TRQ, and DOC, were monitored dynamically, for example, rpm with a resolution of one-third of a revolution (samples at time intervals of 0.07 s.) The shale studied was from Newfoundland and was compared with similar tests on granite, also from a local site. Similar tests were also conducted on the concrete made with fine aggregate, used as “rock-like material” (RLM). The shale samples were embedded (laterally confined) in the concrete while drilled in directions perpendicular, parallel, and at 45 deg orientations to bedding planes. Cores were produced from all three materials in several directions for the determination of oriented physical properties derived from ultrasonic testing and oriented unconfined compressive strength (OUCS). In the case of shale, directions were set relative to the bedding. In this study, both primary (or compression) velocity Vp and shear ultrasonic velocity Vs were found to vary with orientation on the local shale samples cored parallel to bedding planes, while Vp and Vs varied, but only slightly, with orientation in tests on granite and RLM. The OUCS data for shale, published elsewhere, support the OUCS theory of this work. The OUCS is high perpendicular and parallel to shale bedding, and is low oblique to shale bedding. Correlations were found between the test parameters determined from the drilling tests on local shale. As expected, ROP, DOC, and TRQ increase with increasing WOB, while there are inverse relationships between ROP, DOC, and TRQ with rpm on the other hand. All these parameters vary with orientation to the bedding plane.

Funder

Atlantic Canada Opportunities Agency

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3