Optimization Based Geometric Modeling of Nano/Micro Scale Ion Milling of Organic Materials for Multidimensional Bioimaging

Author:

Fu Jing1,Joshi Sanjay2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia

2. Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park, PA 16802

Abstract

Focused ion beam (FIB) instruments have recently started to be seen in applications to organic materials such as polymers and biological samples. FIB provides a novel tool for sectioning biological samples for electron microscope based imaging or microfabrication with environment friendly materials. The modeling of nano/micro scale geometry accurately sculptured by FIB milling is crucial for generating the milling plan and process control, and for computer simulation based prediction and visualization of the milled geometry. However, modeling of the milled geometry on compound materials, especially for high aspect ratio feature, is still difficult due to the complexity of target material, as well as multiple physical and chemical interactions involved. In this study, a comprehensive model of ion milling with organic targets is presented to address the challenges in using a simulation based approach. At each discrete point of the milled front, the depth is the dynamic result of aggregate interactions from neighboring areas, including physical sputtering and chemical reactions. Instead of determining the exact interactions, the parameters of the proposed model are estimated by studying a number of preliminary milling results followed by a nonlinear optimization model. This platform has been validated by milling different features on water ice in a cryogenic environment, and the simulation and experiment results show great consistency. With the proliferation of nanotechnology in biomedical and biomaterial domains, the proposed approach is expected to be a flexible tool for various applications involving novel and heterogeneous biological targets.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,General Materials Science,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3