Evaluation of Algebraic Stress Modeling in Free-Surface Jet Flows

Author:

Walker David T.1,Chen Chao-Yi1

Affiliation:

1. Department of Naval Architecture & Marine Engineering, University of Michigan, Ann Arbor, MI 48109-2145

Abstract

This study evaluated three algebraic stress models for predicting turbulent stresses near the free surface in a free-surface jet at nonzero Froude number, by comparing to experiments. The models examined included one with no explicit near-surface modeling, one which specified model coefficients in terms of invariants of the anisotropy tensor, and a third model which employed a surface correction with an ad-hoc damping function. Experiment showed that at low Froude number, the anisotropy near the free surface did not attain the limiting behavior characteristic of two-dimensional turbulence and the anisotropy increased with streamwise distance. At high Froude number the surface can have little effect on the anisotropy. Far from the free surface, all the models performed well. For the model with no explicit free-surface modeling, the turbulence near the free surface was predicted to be isotropic. For the “anisotropy-invariant” model, the predicted anisotropy was too small and confined to locations too near the free surface. The model with the ad-hoc damping function captured the anisotropy near the free surface best, but specification of the decay constant in the damping function is an open question.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3