Computational Analysis of Air/Mist Film Cooling Using a Sweeping Jet Fluidic Oscillator–Part I: Sweeping Air-Only Jet With Detailed Analysis of Vortex Dynamics

Author:

Abdelmaksoud Ramy1,Wang Ting1

Affiliation:

1. The University of New Orleans Energy Conversion and Conservation Center, , New Orleans, LA 70148

Abstract

Abstract The sweeping jet can be a promising candidate in film cooling applications since it has a large lateral jet spreading which can be considered an advantage when compared to the regular steady jet film cooling. Fluidic oscillators can generate a sweeping jet without the need for any moving parts. In addition, they can be more conveniently manufactured by additive manufacturing techniques. This two-part paper presents a numerical study to investigate the application of using air/mist sweeping jets in film cooling for protecting turbine airfoils. Part I focuses on validating the computational mode by comparing the thermal-flow and heat transfer behavior between steady and sweeping air-only jets to ensure they are consistent with published information. Part II focuses on the mist behavior and its effect on heat transfer enhancement in the sweeping jet film cooling by adding micro-liquid droplets. An unsteady Reynolds-averaged Navier–Stokes (URANS) simulation accompanied by the k–ω shear stress transport (SST) turbulence model was used in this study. A comparison is made between steady and sweeping jets at two blowing ratios (BR = 1 and 2). The results show that the steady jet provided better film cooling performance along the centerline compared to that of the sweeping jet for both blowing ratios. However, the sweeping jet provided better and more uniform film cooling performance in the spanwise direction. Both jets experienced a significant jet-liftoff when the blowing ratio was 2. The entrainment was significant in the sweeping jet case for both blowing ratios. The sweeping jet caused an increase of 9.5% in total pressure losses compared to the steady jet. It was found that for the sweeping jet, a pair of counter-rotating vortices is inward-rushing toward the wall in the center rather than outward-rushing as in a typical steady jet film cooling flow field. A detailed analysis is presented to understand the instantaneous vortex dynamics of the sweeping jet that leads to the inward rotating counter-rotating vortex pair (CRVP) (i.e., reversed CRVP). The result shows that the pair of counter-rotating vortices is just a time-averaged image of a single vortex sweeping back and forth in the domain; it does not actually exist in real time.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3