Hierarchical MPM-ANN Multiscale Terrain Model for High-Fidelity Off-Road Mobility Simulations: A Coupled MBD-FE-MPM-ANN Approach

Author:

Chen Guanchu1,Yamashita Hiroki1,Ruan Yeefeng2,Jayakumar Paramsothy2,Gorsich David2,Knap Jaroslaw3,Leiter Kenneth W.3,Yang Xiaobo4,Sugiyama Hiroyuki5

Affiliation:

1. University of Iowa , Iowa City, IA 52242

2. U.S. Army DEVCOM GVSC , Warren, MI 48397

3. U.S. Army Research Lab, Aberdeen Proving Ground , MD 21005

4. Oshkosh Corporation , Oshkosh, WI 54902

5. Department of Mechanical Engineering, University of Iowa , Iowa City, IA 52242

Abstract

AbstractA new hierarchical multiscale terrain model is developed using the material point method (MPM) to enable effective modeling of large terrain deformation for high-fidelity off-road mobility simulations. Unlike the Lagrangian finite element (FE) model, MPM allows for modeling large deformation of a continuum without mesh distortion using material points as moving quadrature points for the background grid. This unique feature is extended to account for complex granular soil material behavior with the hierarchical multiscale modeling approach in the context of off-road mobility simulations. The grain-scale discrete-element (DE) representative volume element (RVE) and its neural network surrogate model (artificial neural network (ANN) RVE) are developed and introduced to the upper-scale MPM model through the scale-bridging algorithm. The DE RVE is used to generate training data for the ANN RVE, allowing for predicting the history-dependent grain-scale soil material behavior efficiently at every material point that moves through the upper-scale MPM background grid. A numerical procedure for modeling the interaction of the nonlinear FE tire model with the MPM-ANN multiscale terrain model is developed considering moving soil patches generalized for the upper-scale MPM terrain model. It is fully integrated into the general off-road mobility simulation framework by leveraging scalable high-performance computing techniques. The predictive ability of the proposed MPM-ANN multiscale off-road mobility model is examined and validated against the full-scale vehicle test data, involving large deformation of soft terrain. The computational benefit from the neural network surrogate model is also demonstrated.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference34 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of Vehicle Mobility in Shallow Water With Data-Driven Hydrodynamics Model;Journal of Computational and Nonlinear Dynamics;2024-05-14

2. Numerical Simulations of Tire-Soil Interactions: A Comprehensive Review;Archives of Computational Methods in Engineering;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3