Period-1 Motions to Twin Spiral Homoclinic Orbits in the Rössler System

Author:

Xing Siyuan1ORCID,Luo Albert C. J.2

Affiliation:

1. Department of Mechanical Engineering, California Polytechnic State University , San Luis Obispo, CA 93407

2. Department of Mechanical and Mechatronics Engineering, Southern Illinois University Edwardsville , Edwardsville, IL 62026-1805

Abstract

Abstract In this paper, period-1 motions to twin spiral homoclinic orbits in the Rössler system are presented. The period-1 motions varying with a system parameter are predicted semi-analytically through an implicit mapping method, and the corresponding stability and bifurcations of the period-1 motions are determined through eigenvalue analysis. The approximate homoclinic orbits are obtained, which can be detected through the periodic motions with the positive and negative infinite large eigenvalues. The two limit ends of the bifurcation diagram of the period-1 motion are at twin spiral homoclinic orbits. For comparison, numerical and analytical results of stable period-1 motion are presented. The approximate spiral homoclinic orbits are demonstrated for a better understanding of complex dynamics of homoclinic orbits. Herein, only initial results on periodic motions to homoclinic orbits are presented for the Rössler system. In fact, the Rössler system has rich complex dynamics existing in other high-dimensional nonlinear systems. Thus, the further studies of bifurcation trees of periodic motions to infinite homoclinic orbits will be completed in sequel.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference21 articles.

1. An Equation for Continuous Choas;Phys. Lett. A,1976

2. Generation of a Countable Set of Homoclinic Flows Through Bifurcations;Phys. Lett.,1983

3. Bifurcation Phenomena Near Homoclinic Systems: A Two-Parameter Analysis;J. Stat. Phys.,1984

4. Hopf Bifurcation and Period-Doubling Transitions in Rössler Model;Nuovo Cimento B,1985

5. Asymptotic Chaos;Phys. D,1985

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spikes Adding to Infinity on Period-1 Orbits to Chaos in the Rössler System;International Journal of Bifurcation and Chaos;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3