Exergy Control for a Flat-Plate Collector/Rankine Cycle Solar Power System

Author:

Manfrida Giampaolo1,Kawambwa Shukuru J. M.2

Affiliation:

1. Istituto di Energetica, Universita degli Studi di Perugia, Perugia, Italy

2. Institute of Production Innovation, University of Dar es Salaam, Tanzania

Abstract

A performance study is presented of a Rankine organic cycle powered by a low temperature solar collector. In this work a two-phase collector is considered where the heat transfer fluid is vaporized and its saturated vapor expands in a turbine according to a Rankine cycle. The collector system is divided into a boiling and a nonboiling (subcooled) part: The limit between the two depends upon the value of flow rate and radiation. A modified form of the Bliss equation is used to model the thermal performance of the collector in terms of thermal efficiency versus DTI [DTI= (Absorber average temperature-Ambient temperature)/ Solar Radiation]. The system is analyzed by second-law analysis, and it includes several exergy losses of different types (heat transfer, heat loss, etc.) which determine the overall exergy balance. Different working fluids are considered, and optimization to a certain extent is demonstrated from this point of view. In order to minimize irreversibilities and guarantee the most efficient conversion processes, the most important point is the right selection of the collector operating pressure level, which depends on the instantaneous value of radiation and ambient temperature (as well as on the collector thermal performance). The choice of the optimal pressure level is done by means of second-law arguments; the flow rates across the collector, the turbine, and the condenser are consequently determined. A simulation over a typical sunny day in Florence, Italy allows the calculation of the expected daily performance.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3