Affiliation:
1. Department of Mechanical Engineering, UAE University, P.O. Box 15551, Al Ain, UAE e-mail:
2. Department of Mathematical Sciences, UAE University, P.O. Box 15551, Al Ain, UAE e-mail:
Abstract
The present work studies the unsteady, viscous, and incompressible laminar flow and heat transfer over a shrinking permeable cylinder. The unsteady nonlinear Navier–Stokes and energy equations are reduced, using similarity transformations, to a system of nonlinear ordinary differential equations. The boundary conditions associated with the governing equations are the time dependent surface temperature and flow conditions. The method of solution is based on a combination of the implicit Runge–Kutta method and the shooting method. The present study predicts two solutions for both the flow and heat transfer fields, and a unique solution at a specific critical unsteadiness parameter. An analysis of the results, for a specific suction parameter, suggests that the corresponding unique unsteadiness parameter does not depend on the Prandtl number. However, the unique rate of heat transfer is increasing as the Prandtl number increases. In addition, our results confirm that the unique value of heat transfer rate increases as the suction parameter increases, regardless the value of the Prandtl number.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献