Laser-Assisted Machining of a Fiber Reinforced Metal Matrix Composite

Author:

Dandekar Chinmaya R.1,Shin Yung C.1

Affiliation:

1. Center for Laser-Based Manufacturing, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

Metal matrix composites, due to their excellent properties of high specific strength, fracture resistance, and corrosion resistance, are highly sought after over their nonferrous alloys, but these materials also present difficulty in machining. Excessive tool wear and high tooling costs of diamond tools make the cost associated with machining of these composites very high. This paper is concerned with the machining of high volume fraction long-fiber metal matrix composites (MMCs), which has seldom been studied. The composite material considered for this study is an Al–2% Cu aluminum matrix composite reinforced with 62% by volume fraction alumina fibers (Al–2% Cu/Al2O3). Laser-assisted machining (LAM) is utilized to improve the tool life and the material removal rate while minimizing the subsurface damage. The effectiveness of the laser-assisted machining process is studied by measuring the cutting forces, specific cutting energy, surface roughness, subsurface damage, and tool wear under various material removal temperatures. A multiphase finite element model is developed in ABAQUS/STANDARD to assist in the selection of cutting parameters such as tool rake angle, cutting speed, and material removal temperature. The multiphase model is also successful in predicting the damage depth on machining. The optimum material removal temperature is established as 300°C at a cutting speed of 30 m/min. LAM provides a 65% reduction in the surface roughness, specific cutting energy, tool wear rate, and minimum subsurface damage over conventional machining using the same cutting conditions.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3