Mahalanobis Taguchi System (MTS) as a Prognostics Tool for Rolling Element Bearing Failures

Author:

Soylemezoglu Ahmet1,Jagannathan S.2,Saygin Can3

Affiliation:

1. Department of Engineering Management and Systems Engineering, Missouri University of Science and Technology, Rolla, MO 65401

2. Department of Computer and Electrical Engineering, Missouri University of Science and Technology, Rolla, MO 65409

3. Mechanical Engineering Department, University of Texas San Antonio, San Antonio, TX 78249

Abstract

In this paper, a novel Mahalanobis–Taguchi system (MTS)-based fault detection, isolation, and prognostics scheme is presented. The proposed data-driven scheme utilizes the Mahalanobis distance (MD)-based fault clustering and the progression of MD values over time. MD thresholds derived from the clustering analysis are used for fault detection and isolation. When a fault is detected, the prognostics scheme, which monitors the progression of the MD values, is initiated. Then, using a linear approximation, time to failure is estimated. The performance of the scheme has been validated via experiments performed on rolling element bearings inside the spindle headstock of a microcomputer numerical control (CNC) machine testbed. The bearings have been instrumented with vibration and temperature sensors and experiments involving healthy and various types of faulty operating conditions have been performed. The experiments show that the proposed approach renders satisfactory results for bearing fault detection, isolation, and prognostics. Overall, the proposed solution provides a reliable multivariate analysis and real-time decision making tool that (1) presents a single tool for fault detection, isolation, and prognosis, eliminating the need to develop each separately and (2) offers a systematic way to determine the key features, thus reducing analysis overhead. In addition, the MTS-based scheme is process independent and can easily be implemented on wireless motes and deployed for real-time monitoring, diagnostics, and prognostics in a wide variety of industrial environments.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference41 articles.

1. A New Bearing Fault Detection and Diagnosis Scheme Based on Hidden Markov Modeling of Vibration Signals;Ocak

2. On-Line Detection of Localized Defects in Bearings by Pattern Recognition Analysis;Li;ASME J. Eng. Ind.

3. Model for the Vibration Produced by a Single Point Defect in a Rolling Element Bearing;McFadden;J. Sound Vib.

4. Envelope Bearing Analysis: Theory and Practice;Hochmann

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3