Deep Neural Networks in Natural Language Processing for Classifying Requirements by Origin and Functionality: An Application of BERT in System Requirements

Author:

Mullis Jesse1,Chen Cheng1,Morkos Beshoy1,Ferguson Scott2

Affiliation:

1. University of Georgia College of Engineering, , 302 East Campus Road, Athens, GA 30602

2. North Carolina State University Department of Mechanical and Aerospace Engineering, , 1840 Entrepreneur Drive, Raleigh, NC 27606

Abstract

Abstract Given the foundational role of system requirements in design projects, designers can benefit from classifying, comparing, and observing connections between requirements. Manually undertaking these processes, however, can be laborious and time-consuming. Previous studies have employed Bidirectional Encoder Representations from Transformers (BERT), a state-of-the-art natural language processing (NLP) deep neural network model, to automatically analyze written requirements. Yet, it remains unclear whether BERT can sufficiently capture the nuances that differentiate requirements between and within design documents. This work evaluates BERT’s performance on two requirement classification tasks (one inter- document and one intra-document) executed on a corpus of 1,303 requirements sourced from five system design projects. First, in the “parent document classification” task, a BERT model is fine-tuned to classify requirements according to their originating project. A separate BERT model is then fine-tuned on a “functional classification” task where each requirement is classified as either functional or nonfunctional. Our results also include a comparison with a baseline model, Word2Vec, and demonstrate that our model achieves higher classification accuracy. When evaluated on test sets, the former model receives a Matthews correlation coefficient (MCC) of 0.95, while the latter receives an MCC of 0.82, indicating BERT’s ability to reliably distinguish requirements. This work then explores the application of BERT’s representations, known as embeddings, to identify similar requirements and predict requirement change.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference62 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the Influence of Requirement Representation on Idea Generation;Journal of Mechanical Design;2024-05-23

2. DesignFusion: Integrating Generative Models for Conceptual Design Enrichment;Journal of Mechanical Design;2024-05-21

3. A Network Interference Approach to Analyzing Change Propagation in Requirements;Journal of Computing and Information Science in Engineering;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3