Discussion: A Comment on “The Trousers Fracture Test for Viscoelastic Elastomers” (Shrimali, B., and Lopez-Pamies, O., 2023, ASME J. Appl. Mech., 90(7), p. 071010)

Author:

Ciavarella M.12

Affiliation:

1. Politecnico di BARI DMMM Department, , Viale Gentile 182, Bari 70126 , Italy ;

2. Hamburg University of Technology Department of Mechanical Engineering, , Am Schwarzenberg-Campus 1, Hamburg 21073 , Germany

Abstract

Abstract The Rivlin–Thomas classical energy balance model for tearing tests suggests that the fracture energy Γ is proportional to the work of the external load in the legs (potential energy), for not too large stretches in the legs, so the increase of Γ with loading rate is observed or measured, but not really explained by the model. Shrimali and Lopez-Pamies (SLP) have recently built a theory on viscoelastic fracture from recent experimental evidence of a critical (stretch rate-independent) stretch on nucleation of cracks in the pure shear tests. The theory in other words incorporates this evidence in an otherwise energy-based criterion. In the paper “The trousers fracture test for viscoelastic elastomers” (ASME J. Appl. Mech., 2023, 90(7), p. 071010), they seem to obtain the critical (stretch rate-independent) stretch condition for the case of trouser tests (applying their theory from a long enough crack) both in nucleation and steady-state propagation. This outcome seems reasonable since for a linear material, looking at the elastic limit cases of very slow and very fast rates, it would produce an increase of the load, and hence of the fracture energy, proportional to the increase of the modulus, which is in line with what has been found experimentally, although possibly in contrast with classical rate-independent cohesive models, at least for crack nucleation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3