Multidisciplinary Prediction of Spatial-Temporal Evolution of Creep Damage on an Internally Cooled Turbine Vane

Author:

He Qingfu1,Chi Zhongran1,Zang Shusheng1

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China

Abstract

Abstract One of the main causes of damage to gas turbine nozzle guide vanes (NGVs) is creep, which threatens the safety and reliability of gas turbines. Although creep life prediction has been applied to design and maintenance, creep damage is still frequently observed. Inadequate knowledge of the spatial-temporal evolution of creep damage makes it difficult to evaluate and accurately protect NGVs against abnormal creep damage. An integrated aero-thermal-structural simulation method based on conjugate heat transfer (CHT) computational fluid dynamics (CFD) and finite element method (FEM) is proposed to predict the spatial-temporal evolution of creep damage in the NGVs with internal cooling structures. In the temporal dimension, creep life is calculated by Larson-Miller parameters. In the spatial dimension, creep damage is characterized by a parametric modeling and CHT mesh generation procedure. The predicted results show that creep damage forms a groove or crack along the span at the leading edge of the suction side where the stress concentrates, which is similar to the frequently observed damage on the actual NGVs. The interactions between creep damage, flow, and heat transfer are discussed. The increase in turbine inlet temperature significantly shortens the time required for creep formation and evolution. It is suggested that creep damage through the NGV wall could radically alter the heat transfer and flow, resulting in a 30K increase in average leading edge temperature. As a result, the evolution of creep damage is self-promotingly accelerated.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3