Transition From Soliton to Chaotic Motion Following Sudden Excitation of a Nonlinear Structure

Author:

Davies M. A.1,Moon F. C.1

Affiliation:

1. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853

Abstract

The existence of a transition from soliton-like motions to spatially and temporally disordered motions in a periodic structure with buckling nonlinearity is demonstrated. An experiment consisting of nine harmonic oscillators coupled with buckling sensitive elastica was constructed. This experiment is modeled using a modified Toda lattice. As has been shown in previous work, the experiment and the model show strong sensitivity to initial conditions. Here we show that this sensitivity may be related to a transition from relatively ordered solitary wave motion, immediately following the impact, to disordered motions at a later time. Some of the behavior of the observed wave structures is explained using Toda’s analytical results; however, the reasons for the break-up of the waves and their role in the generation of spatio-temporal disorder is not fully understood. We speculate that some type of transient chaotic motion is responsible for the observed behavior. These findings are relevant to aircraft, ship, and space structures that are subjected to large dynamic loads.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3