Design and Test of an Ultralow Solidity Flow-Controlled Compressor Stator

Author:

Kirtley K. R.1,Graziosi P.1,Wood P.2,Beacher B.2,Shin H.-W.2

Affiliation:

1. GE Global Research, Niskayuna, NY 12309

2. GE Aircraft Engines, Cincinnati, OH 45215

Abstract

A full annulus fluidic flow-controlled compressor stator ring was designed and tested in the third stage of a four-stage low-speed research compressor. The solidity of the flow-controlled stator was near unity and significantly below design practice with a commensurately high diffusion factor. The design intent was to reduce the vane count by 30% and load the stator to the point of stall at the design point, then employ flow control to restore attached boundary layers and regain design-point stage matching. The flow control applied, which maintained attached flow, was 1% of the compressor mass flow and was introduced via discrete steady jets on the suction side of the stator. The design method used steady Computational Fluid Dynamics (CFD) with the flow control jets simulated to drive stator exit angles, velocities, and blockage to match the baseline machine. The experiment verified the pretest predictions and demonstrated degraded compressor performance without flow control and restoration of the pumping characteristics of the baseline high solidity compressor when flow control was applied. An assessment of the engine cycle impact of the flow-controlled compressor shows a 2.1 point stage efficiency reduction for the increased loading. Extrapolation of the data and analysis to a high-speed compressor shows a more modest 0.5 point stage efficiency trade.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3