Affiliation:
1. Centre for Autonomous Marine Operations and Systems (AMOS), Centre for Ships and Ocean Structures (CeSOS), Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway e-mail:
Abstract
The shutdown of wind turbines may induce excessive loads on the structures and is an important factor to consider in their design. For pitch-regulated turbines, shutdown calls for blade pitching, and one- or two-blade shutdown may occur during pitch actuator failure. Through coupled analysis, this study investigated the dynamic responses of land-based and spar-type floating wind turbines (FWTs) during shutdown. We simulated the shutdown procedures by pitching one, two, or three blades, and by varying the pitch rate. The nonpitching blades have a fixed pitch angle during the process. Three generator torque conditions were considered: (1) grid loss, (2) mechanical braking, and (3) grid connection. The extreme response values and short-term and annual fatigue damages to the structural components were compared against these values under normal operation and parked conditions. Three-blade shutdown is recommended for both turbines. One- or two-blade shutdown with grid loss may result in a significant rotor overspeed and imbalanced loads acting on the rotor plane. Therefore, unfavorable structural responses are observed. Grid connection or mechanical braking alleviates the situation. The land-based turbine is more sensitive to the pitch rate when considering the tower bottom bending moment, but the blade moments and mooring line loads of the spar-type turbine are affected more.
Subject
Mechanical Engineering,Ocean Engineering
Reference31 articles.
1. Reality sinks in for Wind Project;Boston Herald,2012
2. Enercon E-82 Technical Description,2005
3. Commercial Documentaion Wind Turbine Generator Systems 2.5-2.75 Systems Technical Description and Data;General Electric Company,2011
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献